Teaching

Next term

Integrable methods in the gauge/gravity duality I
Topics to be covered:
  1. superconformal algebra
  2. Green-Schwarz string as a coset model
  3. integrability of the classical superstring
  4. lightcone gauge fixing
  5. ecompactification limit, perturbative S-matrix
  6. symmetries, exact S-matrix

Previous years

String theory I 2011
Integrable field theories 2010
Boundary field theories 2009
Perturbed conformal field theories 2006, 2008
Konform térelméletek 2006, 2007
Mértékelméletek geometriai megalapozása 2004
Differenciálgeometria módszerek a kvantummechanikában 1998, 2000, 2002
Differenciálgeometria módszerek a mechanikában 1997, 1999, 2001
Elméleti Fizika matematikusoknak 1997-1999
Elméleti fizika és matematika gyakorlatok 1991-1996

Integrable field theories

The aim of the course is to introduce methods, used to solve classical and quantum integrable models, based on the example of the sine (sinh)-Gordon field theory.

  1. Classical integrable models: multiparticle solutions, time delays, conserved charges, integrability
  2. Quantum integrable models:
    1. Conformal quantization scheme: free boson CFT, its perturbations and their integrability
    2. Lagrangian quantization scheme: scattering matrix, its connection to correlators and its analytical structure
    3. Bootstrap quantization scheme: properties of the integrable S-matrix, Zamolodchikov-Fateev algebra, bootstrap program
    4. Quantization via lattice regularizations: inhomogenous XXZ model, its solution and double scaled limit
    5. Correlation functions from form factors: form factor boostrap
  3. Quantum integrable models in finite volume: Bethe-Yang equations, Lüscher corrections, Thermodynamic Bethe Ansatz